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In a previous study of the system Mg 2 +/Na +/polyion, polyion = polygalacturonate, the relative suppression 
of the binding of Na + by the presence of Mg 2+ was found to be nearly linearly related to the ratio 
Pb,MJPb.Na, where Pb,Mg and Pb,ua are the numbers of counterions per unit charge associated with or bound 
to the polyion, in the pure magnesium and sodium salts of the polyelectrolyte, as calculated from the 
relationships based on the mathematical formulation of the Poisson-Boltzmann (PB) model using the 
method of Peterlin and Dolar. Subsequent numerical studies involved polyions which had smaller 
interchange distances and the Peterlin and Dolar approach was not able to model these systems. This 
work describes a shooting method that successfully treats a wider range of polyion systems. The dependence 
of competitive counterion binding properties on representative polyelectrolyte parameters and concentration 
predicted by the model are also provided. 
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I N T R O D U C T I O N  

There is strong evidence that territorial binding of 
counterions to polyanions in the absence of excess salts 
when studied by n.m.r, is consistent with the Poisson-  
Boltzmann (PB) model 1. The PB model and a theory 
developed by Halle et al. z for the quadrupolar relaxation 
of counterions was shown to be consistent with 23Na 
n.m.r, studies of sodium polygalacturonate, polyman- 
nuronate and polygaluronate in aqueous solutions by 
Grasdalen and Kvan 3. Using essentially the same 
procedure, we undertook the study of competitive 
binding between monovalent and divalent counterions 
by investigating the system MgZ+/Na+/po ly ion ,  poly- 
ion = polygalacturonate 4. In this system of mixed salts 
in a l : l  equivalent ratio in the absence of excess salts, 
the preferential binding of Mg 2+ over that of Na + was 
found to be strongly concentration dependent. This 
preferential binding was expressed by the parameter F~g: 

Xa(Mg2 +/Na + ) 

FUg - X,(Na+ ) (1) 

where Xa(MgZ+/Na +) is the fraction of sodium ion 
territorially bound in the mixed salt M g 2 + / N a + / p o l y  - 
anion and XB(Na +) is the fraction of sodium ion bound 
in pure sodium salt Na +/polyanion at the same concen- 
tration in aqueous solution. The experimental value of 
FMg for the galacturonate system, which represents the 
relative suppression of the binding of the Na + by the 
competing Mg z+, decreased monotonically with the 
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decrease in the total concentration of the polyanion, but 
there was no simple relationship between FMg and 
concentration. At the same time FMg was  found to be 
linearly related to the ratio Pb,Mg/Pb,Ya where Pb,Mg and 
Pb,Na are the numbers of counterions per unit charge 
associated with or bound to the polyion, in the pure 
magnesium and sodium salts of the polyelectrolyte, 
respectively, as calculated from the relationships based 
on the mathematical formulation of the Poisson- 
Boltzmann (PB) model. 

In subsequent work 5, the F~g calculated using a 
numerical method based on the mathematical model of 
Peterlin and Dolar 6 also followed a practically linear 
relationship with Pb,~ag/Pt,,Na ratio in the experimentally 
used concentration range of about 5 - 5 0 m M  of the 
polyion expressed on a monomer basis. The theoretically 
obtained linear plot was parallel within experim~rital 
error to the experimental line of best fit, albeit the 
absolute magnitude of the experimental and theoretical 
F~g differed by about 20%. Because of this remarkable 
agreement between the theoretical and experimental 
trends in this particular system we attempted similar 
calculations for other systems which are under investiga- 
tion in our laboratory. 

However, computer errors resulted when other polyion 
systems such as polyacrylate and polymalonate were 
studied numerically. The difficulty in obtaining satis- 
factory results using the Peterlin and Dolar model seems 
to be due to the significantly lower values in the axial 
intercharge distances, l, in these polyion systems. The 
polygalacturonate, polyacrylate, and polymalonate sys- 
tems have l values of 0.435, 0.250 and 0.125nm, 
respectively. Peterlin and Dolar divided the curve of the 
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potential function versus the radial distance into 40 
subdivisions. The subdivisions are exponentially spaced 
with the intention of having smaller intervals close to the 
polyion surface where the potential function is changing 
rapidly, while large intervals are used further away from 
the polyion where there is a small change in the potential 
function. Apparently with smaller 1 values, the potential 
function decreases much more rapidly with the increasing 
distance from the polyion. As a result, the exponential 
spacing of the subdivisions is not adequate to monitor 
the change in the potential function. Increasing the 
number of subdivisions to 50 or 60 does not give 
satisfactory results.The current work presents an im- 
proved method of numerical solution of the Poisson 
Boltzmann equation designed to circumvent restrictions 
on the value of l by removing the inherent interval spacing 
of the Peterlin and Dolar method. The model is used to 
explore the concentration effects on the different polyion 
systems, principally focusing on the effect of the axial 
intercharge distance, 1, o n  FMg. 

MATHEMATICAL MODEL 

For the development of the model, the polyelectrolyte 
solution consists of negatively charged polyions and a 
mixture of positively charged monovalent and divalent 
counterions in a solvent. The competitive accumulation 
of the small counterions near the polyion is of interest. 
Length is measured in nanometres (nm) and charge in 
electrostatic units. We use the mathematical formulation 
of Dolar and Peterlin 6. The polyion is modelled as an 
infinitely long cylinder of radius a (nm) which carries a 
specified number of negative charges. Let 1/l denote the 
number of negative charges per unit length carried by 
the polyion. A concentric infinite cylindrical cell of radius 
R (nm) surrounds a single polyion. The radius R is 
determined from Cm, the molar concentration of the 
charged group on the polyanion on a monomer basis, 
according to 

R = 1/(0.6023~1Cm) 1/2 (2) 

The domain of this so-called cell model, is this cylindrical 
cell. 

It is assumed that only electrostatic forces are acting, 
the counterions are point charges and total charge 
neutrality exists inside the cylindrical cell. A cylindrical 
coordinate system with z-axis coincident with the axis of 
the polyion is used. The electrostatic potential ~ will 
depend only on r. In the cell model the electrostatic force 
is assumed to be zero at the cell boundary r = R. The 
potential 0 is normalized so that 0 (R)=  0. The para- 
meters n o and n o denote the numbers of monovalent and 
divalent counterions per unit volume where the electro- 
static potential is zero, and h~ and h z denote the average 
number density of monovalent and divalent counterions 
per unit volume. Let zi = 1 and z2 = 2 denote the valences 
of the monovalent and divalent counterions, respectively. 
The Poisson Boltzmann equation for this system of 
charges is 

dO d (r d r ) = -  dr r z ln  ° exp 
C, 

+ 1 Oe4 

where T denotes the absolute temperature of the 
polyelectrolyte in Kelvin (K); e, the dielectric constant 
of the solvent; e, the charge on a proton (esu); and k, 
the Boltzmann constant. 

At r = R, the boundary conditions are 

dO 
dr (R) = 0 0(R) = 0 (4) 

The gradient of the potential at the surface of the polyion 
is related to the parameter I by 

(dO/dr)(a) = 2e/~al (5) 

The parameters hi and h z are given by 

hl/'n ° = 2 / ( e  2 -- a 2) e x p ( -  z l e O / k r ) r  dr 

(6) 
hz/n ° = 2/(R 2 - a 2) e x p ( - z 2 e O / k T ) r d r  

and total charge neutrality implies that 

1/l = (zlhi + zzh2)~( R2 - a2) (7) 

Equation (7) can be derived from the first equation in 
equation (4) along with equations (3) and (5). 

The equivalent fractions N °, N °, N1, N2, the ratio ~, 
dimensionless variables ~b and x, and dimensionless 
parameters/~, and 2 are defined as 

zlhl 
N °:= z ln°  N ° , = l  - N o N , := _ - -  : 

Zl n° + z 2  n° z ln l  + zzn2 

zlh~ + z2h2 
N z : = l - - g l  ~:= ..o 2 ._o x ,= r / a  (8) 

ZI?I 1 AT- ~2F/2 

R , = R / a  qS(x),= - e O ( r ) / k T  2:=e2/ekT1 

Specification of N o together with equations (3), (4) and 
(5) uniquely determines 0, nO, and n °. The average 
number densities h~ and h 2 can then be found from 
equation (6). A more convenient dimensionless form for 
this problem is obtained by substituting equation (8) into 
equations (3)-(7). 

Given N o , 0~< N o ~< 1, find a real number ~ and a 
function ~b = q~(x) which is twice continuously differen- 
tiable for 1 ~< x ~</~ so that 

d ( x  d4)) _ 42x [ z~NOexp(z , )  

dx  dx  ( ~ J  L 1 )4 

+ (1 - N °) exp(zz~b)] 1 ~< x ~</~ (9) 

dq~ ~7 (,~) = o ~ ( ~ )  = o ( lO) 

de 
dr ( l ) =  -2)4 ( l l )  

Once this boundary value problem (BVP) has been 
solved, the fraction IV1 can be computed from 

2N° fR1 /~71=[/~2 l}~ exp(z l )X d x  (12) 
K y 

The fraction of each counterion bound to the polyion 
can also be computed. The thicknesses of the regions 
over which the monovalent and divalent counterions are 
bound to the polyion are denoted by A1 and A 2 (nm) 
and are taken to be the diameters of the hydrated 
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counterions. The parameters Pb~ and Pb 2 denote the 
corresponding fraction of each counterion bound to the 
polyion and are defined as 

Pb 1 := 

f f  +A' e x p ( ~ T e @ ) r  dr f~+A'/"exp(z~(a)xdx 

f "exp(-Z'eO']rdr 
\ k T /  

f f+a2  e x p ( ~ T e @ ) r  dr 

Pb 2 :- 
f R e x p ( _ ; ~ e ¢ ) r  d r 

f g exp(zl ~b)x dx 

(13) 

fl ~ +~2/. dx exp(z2gb)x 

f exp(z2~b)x dx 

(14) 

Dolar and Peterlin 6 do not solve this BVP. Instead, 
they make the further substitution t = ln(x) and convert 
the BVP into a linear integral equation. Numerical 
solutions are obtained by approximating the integrals 
with a quadrature formula and by solving the resulting 
non-linear algebraic system using Newton's method. For 
small values of the parameter l, we found in our previous 
work 5 that this approach either fails to converge or 
produces inaccurate answers. We comment further 
below. 

SHOOTING METHOD 

Our approach is to apply the shooting method to the 
BVP. The differential equation (9) and the initial 
conditions in equation (10) constitute an initial value 
problem (IVP) which depends on a parameter ~. In the 
shooting method, the parameter ~ is adjusted so that the 
remaining boundary condition, equation (11) is satisfied. 

For N o = 0 and N o = 1, closed form solutions exist to 
the BVP, ~o, ~bo and (1, qS~, respectively. The BVP has 
a unique solution 1. If 0 < NO. < NOb < 1 and ~., ~b. and 
Cb, ~bb are the solutions to the BVP, then 4o > Cb > 4. > ~1, 
qSo(X )<qS.(x)<~bb(x)<q~t(x) for l ~ < x < / ~ ,  and 
0 < /~la < J~lb < 1. 

These statements about the BVP follow from proper- 
ties of the IVP. If ~ < ¢, then the IVP has exactly one 
solution ~b which satisfies qS(x)>0, qS'(x)<0, and 
q~"(x) > 0 for 1 ~< x </~. Let ~1 < 4, < (b, and let qS, and 
q5 b be corresponding solutions to the IVP for a fixed N °, 
0~<N O ~< 1. Then 

~I(X) > ~t~a(X) > ~)b(X) and d~bl dqS, 
dx (x) < d x  (x) < (x) 

for l ~ < x < / ~  (15) 

Let 0 < N ° , < N ° b < I  and let ~,, 4 ,  and ~b, q~b be 
solutions to the IVP for fixed 4, ~ < (, then again 
equation (15) holds. 

Let us extend our notation momentarily and let ~b(x, ~) 
denote the solution of the IVP. The shooting method 
and the proof of existence for the BVP depend on finding 
a zero of the function 

H(~)..= ~ (1, ~) + 22 (16) 

Because H(¢) is strictly increasing for ~1 ~< ~ ~< ~o and 
because H(~o) > 0 and H(~I) < 0, H has exactly one zero 
for ~ ~< ¢ ~< ~o. The interval [¢1, ¢o] is called a bracket 
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for the zero. When an accurate initial guess for ~ is 
available, the secant method is used for a fixed number 
of iterations, followed by Brent's algorithm if the secant 
method has not converged. Brent's algorithm provides 
the zero of H when a good initial guess for ~ is not 
available. Brent's algorithm combines the bisection 
method, the secant method, and inverse quadratic 
interpolation and must be supplied with a bracket for 
the zero 8. This algorithm shrinks the bracket until its 
length is less than a specified tolerance. Once our 
convergence criterion has been satisfied, corresponding 
values for N~, Pb I and Pb 2 are computed. This process 
defines a function N1 = G(N°) which is strictly increasing. 

The n.m.r, experiments provide N1 values and we want 
to numerically approximate the corresponding values of 
N e, Pbl and Pb 2 by applying Brent's algorithm to the 
function F(N°),= G(N °) -N1.  The search for a bracket 
is simplified by the monotonicity of G(N°). Once the zero 
of F has been found, Pb 1 and Pb 2 can be computed. 
Given a value for 371, an initial guess for N O is found 
from an approximate inverse of G obtained by first 
computing a spline interpolant to G. It is advantageous 
to minimize the number of evaluations of G because they 
are expensive. Rather than use some fixed number of 
equispaced knots (values of N °) as is often done, we have 
developed a procedure for computing spline interpolants 
which chooses the knots adaptively according to a local 
error criterion. This procedure usually uses about 25 
knots to produce an interpolant for G which is accurate 
to two places. The procedure begins by evaluating G at 
the endpoints N o = 0 and N o = 1. Each evaluation of G 
requires an initial guess for ~ which is obtained by 
interpolating whatever ~ versus N o data is currently 
available. We use the parametric, local monotonicity 
preserving, quadratic splines of Goodman and Uns- 
worth 9. All the functions we need to interpolate are 
monotone, and these shape preserving interpolants will 
be also. 

For N ° = 0  and N e =  1 there exist closed form 
solutions to the BVP which agree with our computed 
solutions to within specified accuracy. In case N o = 0 or 
N o = 1, ~ is computed directly from the closed form 
solution. N1, Pbl, Pb 2 and q~(1) are computed by solving a 
single IVP. Let z = z2 for N O = 0, let z = z~ for N O = 1, 
and let ~ = 1/ln(/~). If z2 > 1/(1 + c0, then 1° 

= 2z2/(/~ 2 - 1)(1 + z 2) (17) 

where r is the smallest positive solution of the trans- 
cendental equation 

z 2 -  

In case z2 ~< 1/(1 + ct) 

l + z  2 

i + z cot(z in(/~)) 
(18) 

2z2 
= (19) 

(/~2 _ 1)(1 - -  t 2 )  

where t is the smallest positive solution of the trans- 
cendental equation 

1 - -  t 2 
z2 - (20) 

(1 + t coth(t ln(/~)) 

The literature on the cell model has generally reported 
that z and t must be solutions to the transcendental 
equations (18) and (20), respectively. We point out that 
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they must be the smallest positive solutions to these 
equations. 

To solve the IVP we set yl(x)' .=(o(x) and Jz(X):= 
xck'(x). The IVP for the resulting first order system is 
solved numerically using DEPAC. DEPAC is a set of 
three ordinary differential equation (ODE) solvers 
DERKF,  DEABM and DEBDF designed by Shampine 
and Watts 7. D E R K F  is a fifth order variable step size 
Runge-Kut ta  code used for non-stiff and mildly stiff 
ODEs when derivative evaluations are not expensive. It 
should not be used for high accuracy, nor for answers 
at a great many points. DEABM is a variable order, 
variable step size Adams code used for non-stiff and 
mildly stiff ODEs when high accuracy is required. 
DEBDF is a variable order, variable step size backward 
differentiation formula code which can be used on stiff 
ODEs when moderate accuracy is required. D E R K F  and 
DEABM attempt to determine when their use is not 
suitable. Each evaluation of the function G requires the 
solution of the initial value problem for several different 
values of ~. In the shooting method these solutions are 
sometimes referred to as shots. DERKF is used for all 
shots. The final shot is repeated with DEABM and 
DEBDF as a precaution in case the diagnostics in 
D E R K F  should fail. We check to see that all three sets 
of answers agree to desired accuracy. I f D E R K F  produces 
questionable answers, the user has the option of replacing 
it with DEABM or DEBDF.  

As discussed earlier, the Dolar and Peterlin approach 
is equivalent to applying the shooting method using the 
classical fourth order Runge Kutta method to solve the 
IVPs by stepping from /~ to exp(tN_l), from exp(tN_l) 
to exp(tN_2) . . . . .  and finally from exp(tx) to 1. The 
important point to notice here is that the step sizes 
are fixed and do not change when I is changed. On the 
other hand the potential ~b behaves qualitatively like 
e x p [ - ( x  - 1 )/l]. When l is small, more mesh points are 
needed near x = 1 to track q~ accurately. Consequently, 
a mesh which works for moderate l is not generally 
suitable for small 1. For  small l, doubling N may not 
help because the number of mesh points near x = 1 has 
not increased sufficiently. The use of DEPAC avoids the 
problems associated with a fixed mesh because these 
codes have adaptive step size control. D E R K F  integrates 
from x = /~  to x = 1 so that the resulting approximations 
to qS(1) and qT(1) have specified accuracy by adaptively 
adjusting the step size so that its built in local error test 
is satisfied. The local error tolerance is set up so that 
desired accuracy is usually achieved at x = 1. 

To achieve desired accuracy, the error tolerances must 
be chosen according to certain inequalities. Abserr and 
Relerr denote the absolute and relative error tolerances 
for the ODE solver, TolH and TolF denote the absolute 
error tolerance for the zero finders applied to H and F, 
respectively. Let ~, denote the computed zero of H for 
given N °, and let N°, denote the computed zero of F for 
given N1. We require that 

IAH(~o)I + IH(~o)I 
<~ TolH 

IH'(~,)I 
(21) 

IAF(N°.)I + IF(N°.)I 
<~ TolF 

IF'(N°.)I 

where AH and AF denote the error in computing H and 
F. All the terms in equation (21) can be estimated; in 
particular, we set IAH(~.)I = IqS'(1)lRelel"r + Abserr. 

Our numerical approach has been implemented in the 
Apple Macintosh application PolyElectrolyte. This ap- 
plication is programmed in Absoft MacFortran/020 and 
uses double precision. The user must supply values for 
a, Cm, g, T, 1, A~ and A 2. If the user indicates that these 
data are new, PolyElectrolyte begins by making a table 
of values for N o , ~, )71, Pb 1, Pb e and ~b(1). The 
Commands menu allows the user to choose a value for 
NI and corresponding values for N °, ~, Pb 1, P b  2, and 
q~(l) are shown on screen and written to a user named 
output file. The Graphs menu allows the user to obtain 
0 versus x plots, and N °, ~, Pb 1, P h  2 and ~b(1 ) versus Nl 
plots. The Settings menu allows the scales of these graphs 
to be changed and they can be copied to a drawing or 
word processing application. 

RESULTS AND DISCUSSION 

We applied this new approach to the three repre- 
sentative polyelectrolyte systems: the mixed salts 
of polygalacturonate (Mg z +/Na +/PGA), polyacrylate 
(Mg2+/Na+/PAA),  and polymalonate (Mg2+/Na+/  
PMA). The bound fractions of the counterions over a 
large range in c m, 10 -1 to 10 - 6  M ,  and / =  0.425, 0.250 
and 0.125 nm were obtained, which was not possible with 
the Peterlin and Dolar approach. These results demon- 
strate the breadth of the range of parameters that are 
accommodated by the model. The emphasis of the 
applications was on the prediction of competitive binding 
of magnesium and sodium in a l" 1 equivalent ratio with 
these polyions. The relevant parameters of these systems 
are given in Table 1. The A 1 and A 2 values are the 
literature values for the diameters of the hydrated ions 
of sodium and magnesium, respectively 11 

Figure 1 shows the plots of FMg versus Cm in the 
concentration range of 10 1 to 1 0 -6 M for the three 
systems. The plots are distinctly non-linear with the 
greatest curvature occurring at lower concentrations so 
that the extrapolation to infinite dilution is not possible. 
Perhaps an even more significant result is that the 
comparative order of FMg in the three systems differs with 
concentration. For example, at Cm = 0.1 Fug(PGA)> 
FMg(PMA) > Fug(PAA); at intermediate concentrations 
ofc  m between 0.01 and 0.075, F~g(PMA) > F~ag(PGA ) > 
Fug(PAA); at concentrations lower than 0.01, 
FMg(PMA) > FMg(PAA) > F~g(PGA). On the other 
hand, the plots of FMg versus Pb,Mg/Pb.N,,Shown in Figure 
2, are more nearly linear except that the PGA system 
gives significant deviation from linearity at concentra- 
tions less than 10-s M. The groupings of the FMg points 
increases in the order PMA > PAA > PGA indicating 

Table 1 Parameters for polyelectrolyte systems. Common: T =  
303.15K, gr (relative permittivity of water) = 76.58, A I =ANa += 
0.72 rim, and A2 = AM~2 ~ = 0.86 nm 

Parameters 
Systems a (nm) l (nm) 

Mg 2 +/Na +/PGA" 0.5 0.435 
Mg 2 * /Na +/PAA b 0.3 0.250 
Mga+/Na+/PMA 0.3" 0.125" 

a Reference 3 
b Reference 2 
CTaken as the value for PAA 
"Taken as one-half the value for PAA 
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Figure 1 Concentration dependence of FM. for the mixed neutral salt 
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Figure 2 Plots of I~M~ versus eb,Mg/eb,Na for the mixed neutral salt 
systems containing equivalent amounts of Na + and Mg 2+ for a 
concentration range of 10 -6 tO 10 -1 M: (A), PGA; (n), PAA; and 
(O), PMA 
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Figure 3 Plots of FM~ versus l for hypothetical mixed neutral salt 
systems containing equivalent amounts of Na ÷ and Mg 2÷ at different 
concentrations, c,,, with parameters a =0.3 nm, 1=0.435 nm, 
T=303.15K, Al=0.72nm and A2=0.86nm: (O), 0.1M; (A), 
0.05 M; (m), 0.001 M; and ( × ), 0.0001 M 
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Figure 4 Plots of FMg versus degree of neutralization, ~t, by a mixed 
base containing equivalent amounts of Na + and Mg2+: (A), PGA; 
(.),  PAA; and (O) PMA 

that the competition between Mg 2+ and Na + is the least 
concentration dependent for the PMA system and the 
most concentration dependent for the PGA system. 

Because the l parameter  is the factor that most 
dramatically distinguishes the three systems, the effects 
of l and Cm on Fug for a hypothetical system in which 
all other parameters were held constant ( a = 0 . 3  nm, 
A 1 -- 0.72, A z = 0.86) were investigated. Figure 3 is a plot 
of FMg versus I. The following features are of note. First 
of all, the concentration dependence of FMg is the smallest 
for low values of l and becomes more significant with 
increasing l. Also, the absolute value of 1-Mg for any given 
concentration passes through a different minimum for 
the given concentration. 

Figure  4 is a representation of FMg versus ~ for the 
three systems of interest where ~ is the degree of 
neutralization of the polyacids by a mixed base contain- 
ing a 1 : 1 equivalent ratio of magnesium and sodium. As 
a polyacid is neutralized, the average distance between 
the charges developed during neutralization, l, decreases 
as Cm increases. A rigid rod conformation is assumed 
throughout the neutralization. As seen in Figure 4, the 
result of the change in these two parameters on the degree 
of competition depends on the system of interest and the 
degree of neutralization. The PAA and PMA systems 
exhibit Frog minima at different degrees of neutralization 
while PGA exhibits only an inflection. If the binding is 
exclusively territorial and the (PB) model is applicable, 
the model predicts that the competitive effect of Mg 2+ 
on the binding of Na + is minimal for small ~, or low 
pH,  and significantly greater for higher ~, or higher pH. 
For  the PMA and PAA this effect would be most 
prominent at intermediate values of ct where minima 
occur. 

In summary,  the model developed here predicts 
complicated behaviour for the competitive binding of 
mixed divalent and monovalent  counterions with these 
representative polyions. The approach provides a means 
of calculating competitive binding properties over a 
broad range of parameters. Experimental results can be 
compared with the model and results deviating from 
behaviour predicted by the model can then be ascribed 
to effects not contained in it, such as the dependence of 
conformation on the degree of ionization and site 
binding. 
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